

Neuropsychology of Epilepsy

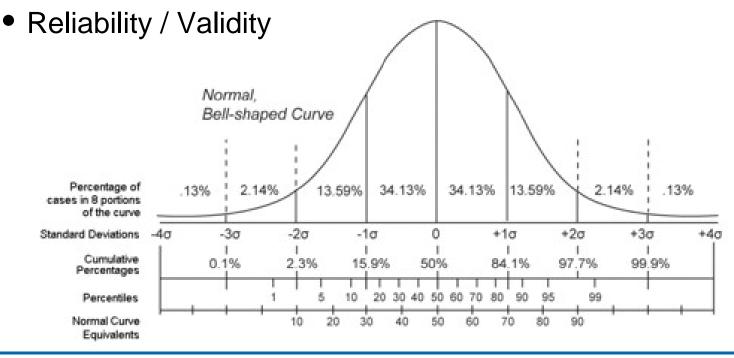
Kayela Arrotta, PhD Cleveland Clinic Epilepsy Center September 24, 2020

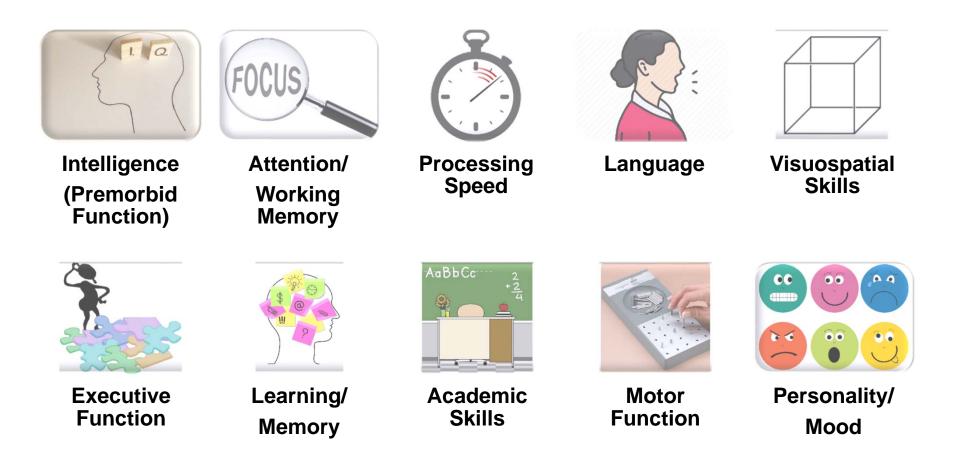
*Slides adapted from Robyn Busch, PhD, ABPP

Disclosures

None

Overview


- 1) Components of a neuropsychological assessment
 - Indications for evaluation in epilepsy
- 2) Factors that affect cognition in epilepsy
- 3) Patterns of cognitive performance in focal epilepsies
- 4) Cognitive change after epilepsy surgery
 - Methods for assessing hemisphere dominance
 - Risk factors for post-surgical cognitive decline

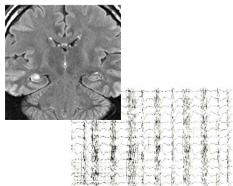

Neuropsychological Assessment

- Systematically measure various aspects of behavior
- Standardized assessment techniques
- Normative data
 - Adjustment for age, education, sex

Primary Cognitive Domains

Indications for Cognitive Assessment

- Document cognitive abilities (strengths/weaknesses)
 - Cognitive complaint or change
 - School difficulty / learning problems
 - Work performance
 - Disability
 - Competency
- Impact of seizures on cognitive functioning
 - Lateralization / localized deficits
 - Indications re: typical/atypical dominance
- Establish a baseline to assess change following intervention
 - Medication change
 - Epilepsy surgery
 - -Prediction of likelihood of cognitive decline

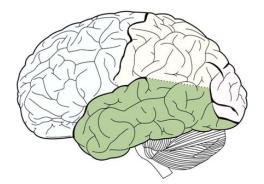


Factors that Influence Cognition in Epilepsy

- Seizure etiology and type
- Seizure frequency, duration, and severity
- Cerebral lesions
- Age at seizure onset
- Ictal and interictal physiological dysfunction
- Structural damage due to repetitive or prolonged seizures
- Hereditary factors
- Antiepileptic drug effects
- Psychosocial conditions
- Psychiatric comorbidities

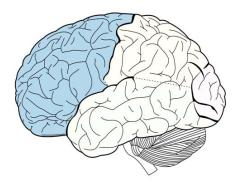
Psychological Functioning in Epilepsy

- Psychiatric disturbance in 20-40% of epilepsy patients
 As high as 70% in refractory epilepsy
- Depression most common psychiatric disorder in intractable epilepsy – 20 to 55%
 - Also high rates of other psych disorders (e.g., anxiety, ADHD, ASD)
- High prevalence after surgical intervention, even when seizures well-controlled
- Severity of depression associated with greater cognitive impairment in patients with intractable seizures
- Relationship between poor mood state and impaired memory, especially in left TLE



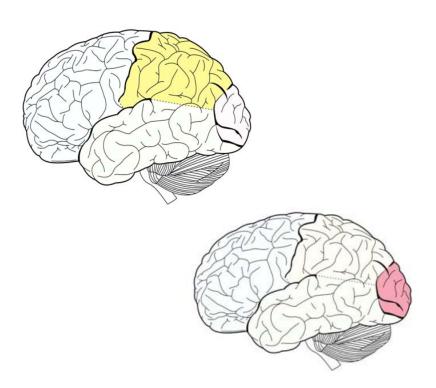
- Cognitive / behavior problems exist even prior to diagnosis and treatment
- Children with new onset epilepsy
 - Mild diffuse cognitive impairment, regardless of syndrome
 - Academic underachievement that predates first seizure
 - Greater behavior difficulties
- Adults with new onset epilepsy
 - Cognitive deficits compared to normal controls across a number of cognitive domains (attention, concentration, motor function, executive functioning, memory, and learning)
- Cognitive impairment in epilepsy not solely due effects of seizures and medications

• Temporal Lobe Epilepsy


- Material-specific memory deficits
 - -Particularly if dominant side
 - -Impaired recall AND recognition
- Reduced confrontation naming
 - -Word-retrieval problems
- Other cognitive issues in subset
 - -Attention difficulties
 - -Executive dysfunction

Frontal Lobe Epilepsy

- Reduced performance on wide range of "frontal" tasks
 - -Attention / working memory / slowed psychomotor speed
 - -Executive dysfunction
 - -Reduced motor coordination and sequencing
- Other cognitive issues in subset
 - -Memory (retrieval) problems
 - -Impaired recall, INTACT recognition
 - -Effects on social cognition
 - -Faux pas, humor appreciation
 - -Facial affect recognition



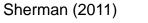
Parietal Lobe Epilepsy

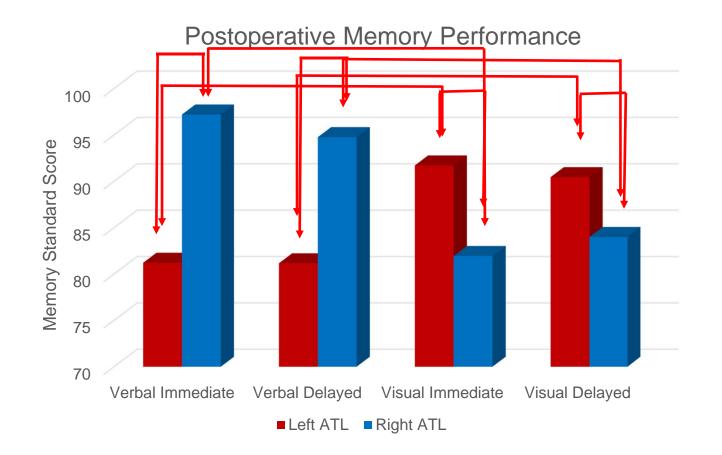
- Variable deficits depending on seizure side and location
- Most common deficits
 - -Agnosia / Apraxia
 - -Visuospatial difficulties
 - -Left-right confusion
 - -Hemineglect
- Other potential deficits
 - -Linguistic
 - -Problem-solving

Occipital Lobe Epilepsy

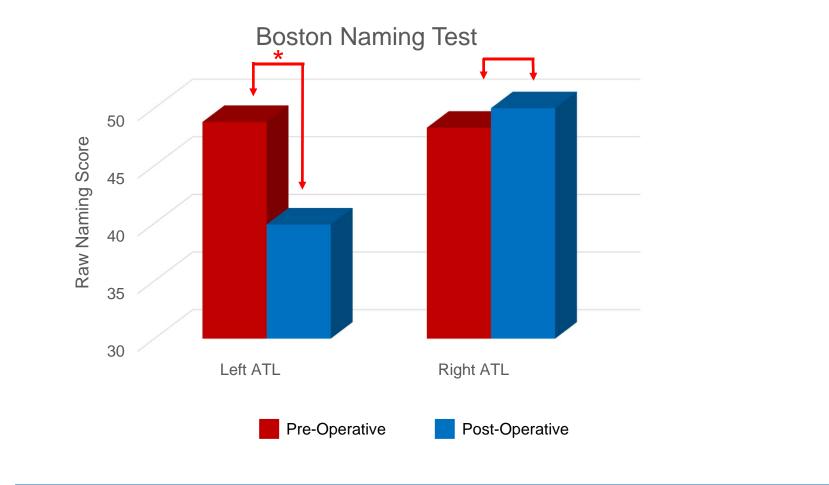
- Very limited research

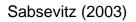
Subjective Memory Ability


- Poor correlation between subjective and objective memory abilities
- Subjective memory complaints are often more related to depression than to actual memory ability
- Self-reported cognitive declines are uncommon after epilepsy surgery (9%)
- Self-reported gains were more frequent (18%) and ironically often observed in the domains where objective cognitive declines occurred


Cognitive Change After Epilepsy Surgery

- Temporal lobectomy most comprehensively studied
 - Left ATL
 - -44% verbal memory decline; 7% improve
 - -39% naming decline; 4% improve
 - -10% verbal fluency decline; 27% improve
 - Right ATL
 - -23% show visual memory decline; 10% improve
 - Few declines in IQ, executive functioning, or attention
- Variation in surgical technique had no large effect on cognitive outcome, except naming




Cognitive Change After Epilepsy Surgery

Cognitive Change After Epilepsy Surgery

Language Dominance & Handedness

	Left Dominant	Bilateral Symmetric	Right Dominant
Right-Handed			
Neurologically Normal	94%	0%	6%
Epilepsy	78%	16%	6%
Left-Handed / Ambidex			
Neurologically Normal	78%	14%	8%
Epilepsy	46%	9%	45%

Springer (1999), Szaflarski (2002), Sabbah (2003)

Neuropsychology – Lateralization and Risk

- Laterality
 - Is cognitive pattern consistent with suspected side and site of seizure onset?
 - Anything to suggest atypical dominance?
- Cognitive risk
 - Most research in temporal lobe epilepsy
 - -Higher presurgical scores (memory, naming) associated with greater risk for declines
 - Low verbal-nonverbal memory discrepancy scores associated with greater risk for memory decline

Neuropsychology – Advantages / Limitations

- Advantages
 - Uses standardized tests that are validated/reliable
 - Noninvasive and easily repeatable
 - Methods to control for practice effects
 - Not subject to time constraints
 - Useful in identifying lateralized dysfunction
 - Provides baseline to evaluate postoperative change
 - Identifies risk for postoperative cognitive decline
- Limitations
 - Relationship between nondominant temporal function and performance on visual memory measures is variable
 - Poor localization abilities for specific memory functions
 - Unable to identify essential areas

Wada Test – Lateralization and Risk

- Lateralization
 - Temporary "inactivation" of ipsilateral cerebral hemisphere to allow independent testing of contralateral hemisphere

- Cognitive risk
 - Memory decline associated with
 - -poor memory after ipsilateral injection (limited reserve)
 - -good memory after contralateral injection (intact adequacy)

Wada & Rasmussen (1960); Milner (1962)


Wada Test – Advantages / Limitations

- Advantages
 - Temporary inactivation technique
 - Simulates effects of actual surgical ablation
 - Is predictive of postoperative cognitive outcome
- Limitations
 - Invasive
 - No uniform testing procedure across centers
 - Clinical effects (confusion, agitation, somnolence)
 - Not readily repeatable
 - Aphasia following dominant injection
 - Insufficient time for detailed testing
 - Limited in distinguishing material-specific deficits
 - Crossflow issues
 - Poor spatial resolution hippocampal function?

fMRI – Lateralization and Risk

- Lateralization
 - Activation technique to assess brain activity during cognitive processes
 - Evidence for utility in language and memory lateralization
 - High concordance with Wada results
 - Requires control or baseline task to differentiate functions
- Cognitive risk
 - Both language dominance and mesial temporal activation during word encoding are predictive of memory outcome after ATL
 - fMRI language laterality index has incremental validity in predicting memory outcome after left ATL
 - *Ipsilateral* activation of MTL during memory tasks is associated with postsurgical naming and memory declines; *Contralateral* activation of MTL during memory tasks is associated with postsurgical memory improvements

fMRI - Advantages and Limitations

- Advantages
 - Noninvasive and easily repeatable
 - Good spatial and temporal resolution
 - Permits study of multiple brain functions
 - No strict time limitations
 - Can be used sequentially
 - Can identify mesial temporal activations during memory encoding
- Limitations
 - Disruption of neurovascular coupling
 - Relatively gross temporal resolution
 - Head motion can cause artifact
 - Susceptibility artifact
 - Difficult to identify essential areas
 - Thinking/problem-solving during rest state?
 - Surgical planning issues

Risk Factors for Memory Decline

- Left (dominant) temporal surgery
- Average or better presurgical memory
- Small verbal-visual memory discrepancy
- Anterior hippocampal activation on fMRI
- Good memory after contralateral Wada injection
- Limited asymmetry in hippocampal volume
- Absence of MTS or limited hippocampal neuron loss
- Later age at seizure onset
- Older age at time of surgery

Risk Factors for Naming Decline

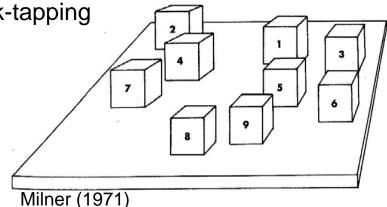
- Left (dominant) temporal surgery
- Older age at seizure onset
- Older age at time of surgery
- fMRI language activation ipsilateral>contralateral
- Nonlesional or mild HS

Summary

- Neuropsychological evaluation involves assessment of wide range of cognitive abilities
- Patterns of performance can provide clues re: language dominance and seizure lateralization/localization
- Useful to document cognitive strengths/weaknesses and establish baseline functioning prior to treatment
- Important to predict cognitive outcome and to objectively measure cognitive change following surgery
- Wada and fMRI are other methods useful in establishing dominance and predicting cognitive outcome
- A host of factors can influence cognition and relate to cognitive outcome

Intellectual Functioning

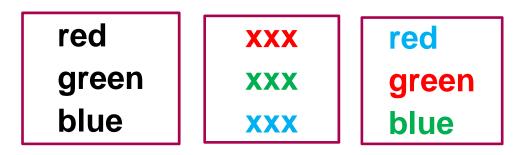
- Wechsler Scales
 - Wechsler Preschool and Primary Scale of Intelligence (WPPSI)
 - Wechsler Intelligence Scale for Children (WISC)
 - Wechsler Adult Intelligence Scale (WAIS)
- Scores Produced
 - Full Scale IQ
 - -Verbal Comprehension
 - -Perceptual Organization / Perceptual Reasoning
 - -Working Memory
 - -Processing Speed
 - Subtest scaled scores



Attention Measures

- Attentional Capacity / Attention Span
 - Digit Span Forward (5-9-7-3-4-6 \longrightarrow 5-9-7-3-4-6)
 - Spatial Span / Corsi Block-tapping

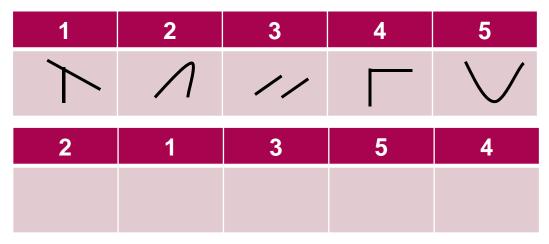
- Working Memory / Mental Tracking
 - Digit Span Backward (5-9-7-3-4-6 → 6-4-3-7-9-5)
 - Spatial Span Backward
 - Letter-Number Sequencing (6-F-2-B-5-Q \longrightarrow 2-5-6-B-F-Q)
 - Arithmetic



Attention Measures

- Concentration / Sustained or Focused Attention
 - Continuous Performance Test

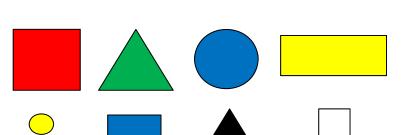
- Stroop Tests

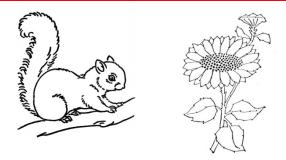


Processing Speed

- Visuomotor Processing Speed
 - Trail Making Test Part A
 - Symbol Search

- Digit Symbol Test / Coding
- Symbol Digit Modalities Test

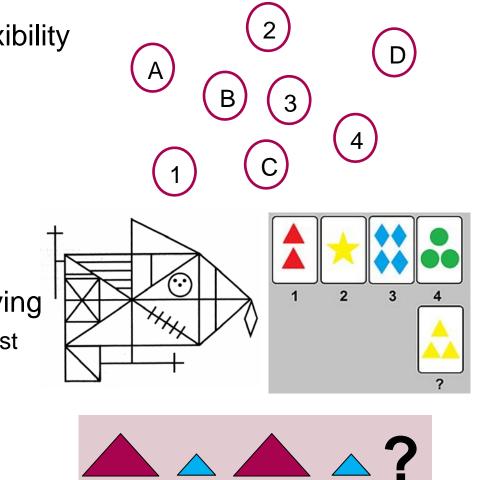

3


2

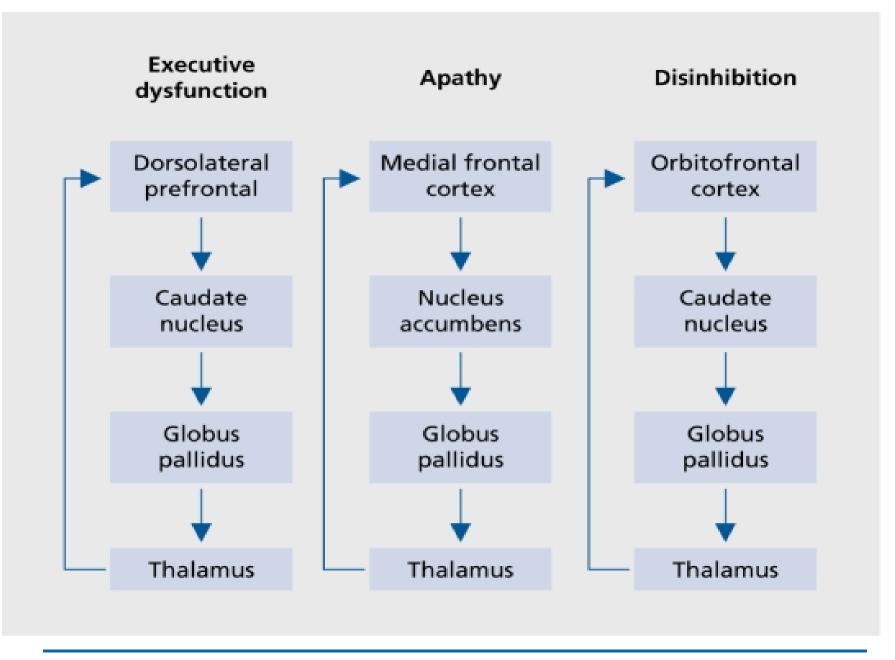
5

Language

- Naming
 - Boston Naming Test
 - Visual Naming Test
 - Auditory Description Naming
 - Expressive One-Word Picture Vocabulary Test
- Fluency
 - Phonemic (letter)
 - Semantic (category)
- Repetition
- Verbal Comprehension
 - Token Test

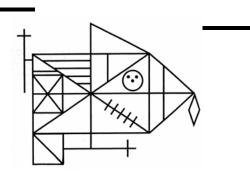


Instrument with black and white keys. Animal with a very long neck.

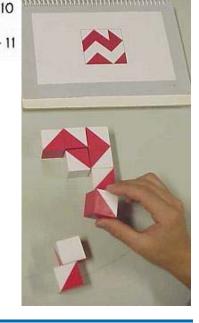


Executive Functioning

- Set Shifting / Mental Flexibility
 Trail Making Test Part B
- Organization / Approach
- Abstract Reasoning
 - Similarities
 - Matrix Reasoning
- Planning & Problem Solving
 - Wisconsin Card Sorting Test
- Decision Making
- Family Report



Visuospatial Skills


- Perception
 - Judgment of Line Orientation
 - Line Bisection
 - Test of Visual Perceptual Skills
- Construction
 - Block Design
 - Rey-Osterrieth Complex Figure

3

2

Memory

- Verbal Memory
 - Stories / Paragraphs
 - Word Pairs
 - Word List Learning (e.g., Rey AVLT, California AVLT)
- Visual Memory
 - Designs
 - Faces
 - Scenes
- Immediate Memory
- Delayed Memory
- Recognition Memory

Academic Achievement

- Woodcock Johnson Tests of Achievement
 - Reading
 - Written Language
 - Mathematics
 - Listening Comprehension

- Wide Range Achievement Test
 - Reading
 - Spelling
 - Math Computation

Motor Skills

- Grip Strength
 - Dynamometer
- Motor Speed
 - Finger Tapping
- Manual Dexterity
 - Grooved Pegboard
 - Purdue Pegboard
- Lateralization of Motor Skills

LAVADETTE RESTREMENT OF

Emotional Functioning

- Self Report Questionnaires
 - Anxiety
 - -Beck Anxiety Inventory
 - -State-Trait Anxiety Inventory
 - -Revised Children's Manifest Anxiety Scale
 - Depression
 - -Beck Depression Inventory
 - -Center for Epidemiological Studies Depression Inventory
 - -Neurological Disorders Depression Inventory for Epilepsy
 - -Children's Depression Inventory
- Personality Style
 - Minnesota Multiphasic Personality Inventory
 - Personality Assessment Inventory
- Family Report

Behavioral Observations

- Eye Contact
- Interpersonal Style
- Disinhibition
- Impulsivity
- Fatigue
- Frustration Tolerance
- Hyperactivity
- Motor function
- Effort (e.g., SVTs)
- Family Report

Cognitive Effects of Antiepileptic Drugs

- Dependent on host of factors
 - Type of drug Serum level Duration of treatment
 - Dosage
 Drug interactions
- In general...
 - Older AEDs
 - -PB and PRM: poorest cognitive profiles
 - -CBZ: motor speed and attention difficulties
 - -PHT: usually restricted to visually guided motor functions
 - Newer AEDs
 - -TPM: greatest risk for cognitive impairment
 - -ZNS: little data, but appears worse than other new agents
 - -GBP, LTG, LEV: more positive cognitive profiles
 - Polytherapy not adequately addressed
 - Most studies based on adults (not children or elderly)

For summary and specific references, see Jokeit (2011) and Eddy (2011)

- Individual characteristics

Evaluating Cognitive Change Over Time

- Reliable Change Indices
 - Identify distribution of test-retest change scores in absence of any real underlying change
 - Establish confidence intervals
 - Test-retest scores outside of CI reflect degree of change is rare and unlikely due to chance score fluctuations
- Standardized Regression-Based Change Scores
 - Account for test-retest reliability and practice
 - Control for bias of demographic and epilepsy factors
 - More accurate prediction of retest performance using these variables as predictors into linear regression
 - Consideration of individual patient's preoperative test performance to control for regression to the mean

